

Please write clearly ir	ו block capitals.	
Centre number	Candidate number	
Surname		-
Forename(s)		-
Candidate signature	I declare this is my own work.	

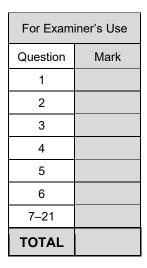
INTERNATIONAL A-LEVEL PHYSICS

Unit 4 Energy and Energy resources

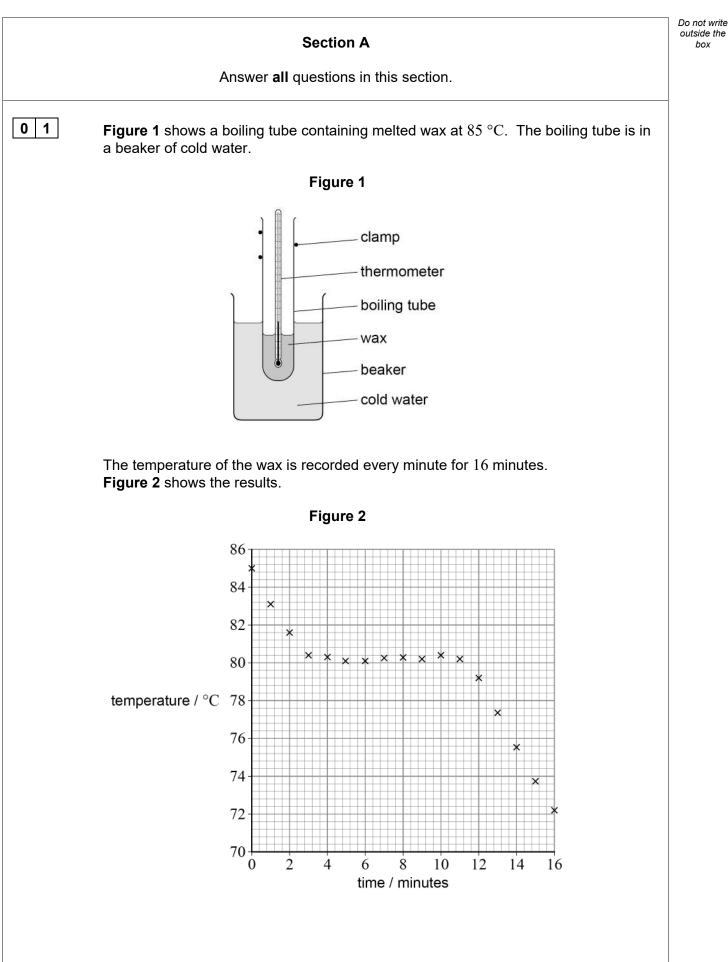
Time allowed: 2 hours

Materials

For this paper you must have:

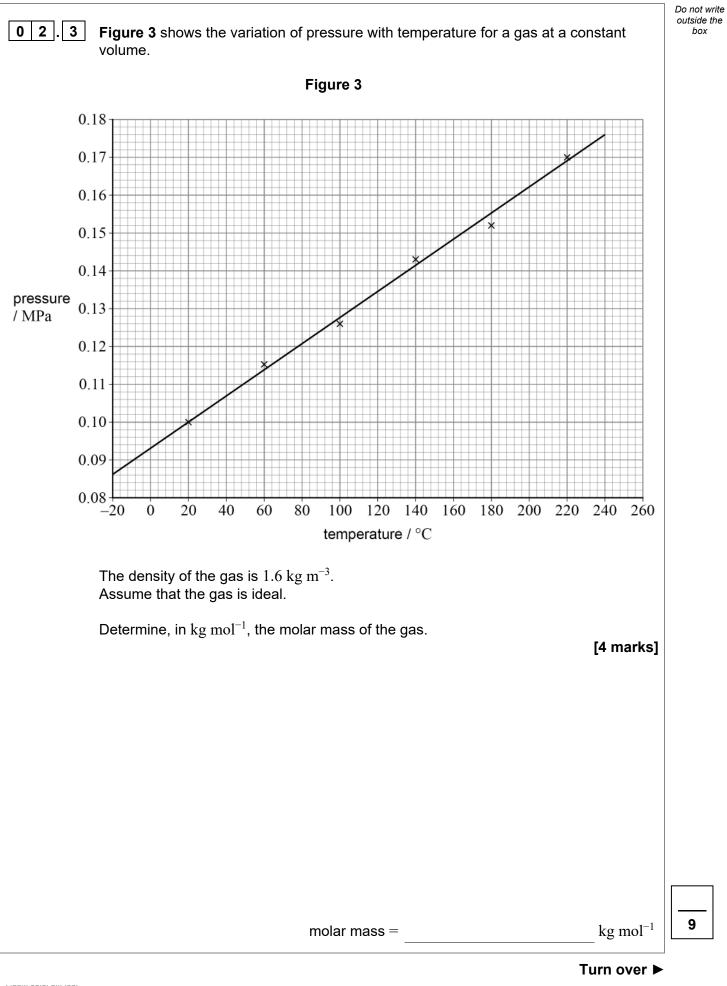

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

Instructions


- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.



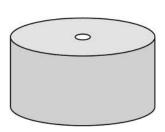
0 1.1	Estimate, using Figure 2 , the melting point of the wax. [1 mark]	Do not write outside the box
0 1.2	melting point = $^{\circ}C$ The internal energy of the wax decreases at an average rate of 7.8 J s $^{-1}$ during the	
	time the wax changes state. Estimate the mass of wax in the boiling tube. specific latent heat of the wax = $1.5 \times 10^5 \text{ J kg}^{-1}$	
	[3 marks]	
01.3	<pre>mass =kg Describe how the average kinetic energy and the average potential energy of the wax particles change between 8 and 16 minutes. [2 marks]</pre>	<u> </u>
		6

02.1	The volume of a fixed mass of gas is kept constant.	Do not write outside the box
	Explain why the pressure of the gas decreases when the temperature is decreased.	
	[3 marks]	
02.2	Show that the pressure p of an ideal gas can be given as	
	$p = \frac{\rho RT}{M}$	
	where ρ is the density, <i>T</i> is the absolute temperature and <i>M</i> is the molar mass of the gas.	
	gas.	

0 3	A flywheel energy storage system (FESS) stores kinetic energy in a rotating mass.	Do not write outside the box
03.1	The flywheel in one FESS rotates at 1.4×10^4 revolutions per minute.	
	Show that the angular speed of the flywheel is approximately 1.5×10^3 rad s ⁻¹ .	
	[1 mark]	
0 3.2	The flywheel has a moment of inertia of 92 kg m^2 .	
	Show that the rotational kinetic energy stored by the flywheel is approximately	
	100 MJ. [2 marks]	
03.3	The flywheel connects to a generator. The generator exerts a constant resistive	
	torque of $120 \text{ N} \text{ m}$ on the flywheel for 4.0 minutes .	
	Calculate the angular speed of the flywheel after 4.0 minutes. [3 marks]	
	angular speed = rad s ⁻¹	

0 3.4

The flywheel in one FESS is a solid steel cylinder, as shown in Figure 4.


Figure 4

Turn over ►

IB/M/Jun22/PH04

9

Do not write outside the box

The maximum energy that can be safely stored in a FESS is limited by the material properties of the flywheel.

Designers consider replacing the steel flywheel with one of identical dimensions made of carbon fibre. Data about each material are shown in Table 1.

Material	Breaking stress / GPa	Density / kg m ⁻³
steel	1.5	8.0×10^{3}
carbon fibre	4.5	1.6×10^{3}

Table 1

Each design is required to store the same amount of rotational kinetic energy.

Suggest why the designers need to consider these densities and breaking stresses when choosing a material for the flywheel. Calculations are not required.

[3 marks]

Do not write outside the

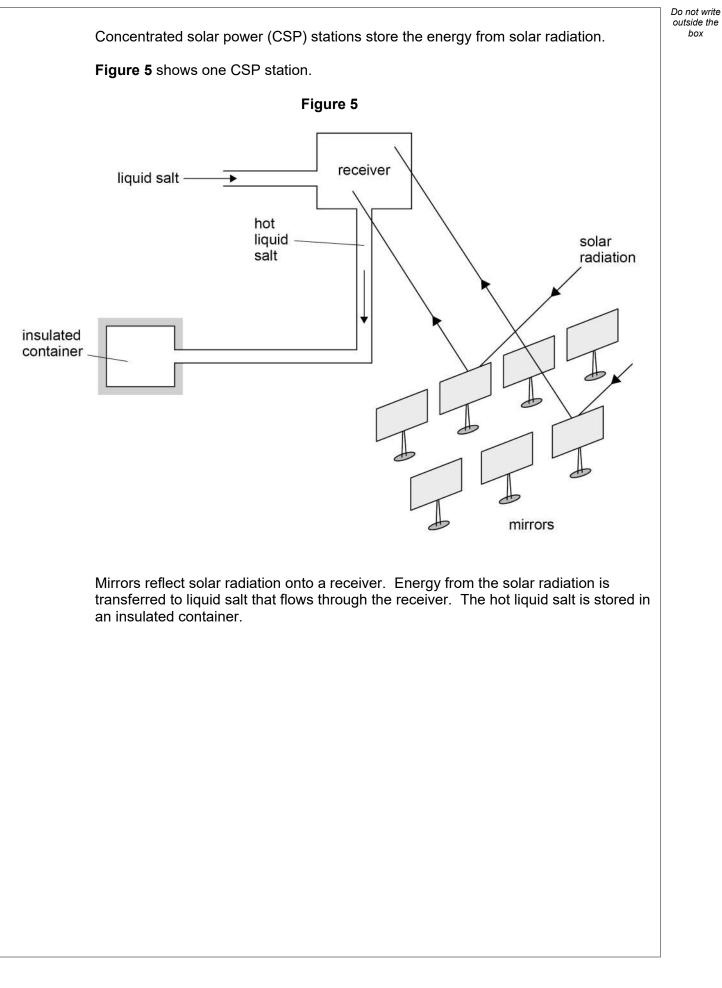
box

	${}^{12}_{6}C^* \rightarrow {}^8_{4}Be + {}^4_{2}\alpha$	
	The carbon nucleus is initially stationary. The beryllium-8 nucleus and the alpha particle move as a result of the decay.	
	Compare the momentum and the kinetic energy of the 8_4 Be nucleus to the momentum and the kinetic energy of the alpha particle immediately after the decay.	
	Support your answer with a calculation. [4 marks]	
	momentum	
	kinetic energy	
	Question 4 continues on the next page	
	Turn over ▶	•
	IB/M/Jun22/PH0	4

0 4 . 2

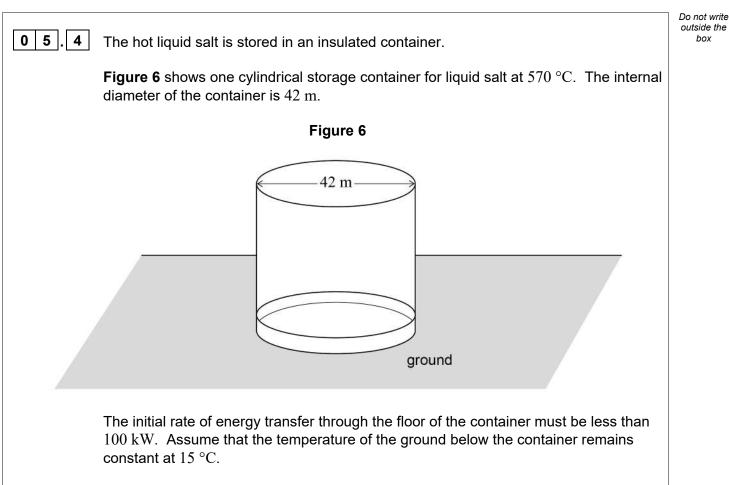
an alpha particle $\begin{pmatrix} 4\\ 2\\ \alpha \end{pmatrix}$.

An alternative mode of decay for ${}^{12}_6 \text{C}^*$ is decay into a beryllium-8 $\binom{8}{4} \text{Be}$ nucleus and


Do not write outside the box

		Do not write outside the
04.3	One alpha particle with $2.9~MeV$ of kinetic energy rebounds from a different stationary $^{12}_{\ 6}{\rm C}$ nucleus.	box
	Show that the closest separation between the alpha particle and the ${}^{12}_6$ C nucleus is approximately 6 fm.	
	[3 marks]	
04.4	Nuclear radii were initially estimated using the technique of the closest approach of alpha particles.	
	Electron-diffraction experiments give more accurate determinations of nuclear radii.	
	Suggest why.	
	[2 marks]	
		14

0 5 . 1 The intensity of solar radiation at the radius of the Earth's orbit is 1400 W m^{-2} .	Do not write outside the box
Calculate the power output of the Sun.	
distance of Earth from Sun = 1.5×10^8 km [2 marks]	
power output –	
power output = W	
Question 5 continues on the next page	
Turn over ▶	



12

0 5.2	This CSP station has 10 000 mirrors. Each mirror has a reflecting area of 120 m ² and a reflection efficiency of 90%. The intensity of solar radiation at each mirror is 900 W m ⁻² . Calculate, in MW, the total power of the solar radiation reflected by the mirrors. [2 marks]	Do not write outside the box
	total power =MW	
0 5 . 3	The reflected solar radiation heats liquid salt flowing through the receiver. Liquid salt enters the receiver at 290 °C and leaves at 570 °C. The salt flows through the receiver at a rate of 0.75 m ³ s ⁻¹ . Calculate the rate of energy transfer to the liquid salt in the receiver. specific heat capacity of liquid salt = $1.5 \text{ kJ kg}^{-1} \text{ K}^{-1}$ density of liquid salt = 1800 kg m^{-3} [3 marks]	
	rate of energy transfer = $J s^{-1}$	
	Question 5 continues on the next page	

Deduce whether a concrete floor of 45 cm thickness will be suitable.

thermal conductivity of concrete = $0.24 \ W \ m^{-1} \ K^{-1}$

[3 marks]

06. 1 Define the binding energy of a nucleus.	[1 mark]
b 6 . 2 Calculate the binding energy of a nucleus of thorium-232 $\begin{pmatrix} 232 \\ 90 \end{pmatrix}$. mass of $\begin{pmatrix} 232 \\ 90 \end{pmatrix}$ Th nucleus = 3.852×10^{-25} kg	
90 ¹¹¹¹⁰⁰⁰⁰³ 5.852 × 10 Kg	[4 marks]
binding energy =	J
Question 6 continues on the next page	
	Turn over ►

0 6.3

Thorium-232 nuclei absorb neutrons and become uranium-233 nuclei after a series of radioactive decays.

$$\begin{array}{l} 1 \\ 0 \\ n \end{array} + \begin{array}{c} 232 \\ 90 \end{array} \text{Th} \rightarrow \begin{array}{c} 233 \\ 90 \end{array} \text{Th} \\ \begin{array}{c} 333 \\ 90 \end{array} \text{Th} \rightarrow \begin{array}{c} \mathbf{R} \end{array} + \begin{array}{c} 0 \\ -1 \\ -1 \end{array} \beta \\ \begin{array}{c} \mathbf{R} \end{array} \rightarrow \begin{array}{c} 233 \\ 92 \\ 0 \end{array} \text{U} + \begin{array}{c} 0 \\ -1 \\ -1 \end{array} \beta \end{array}$$

Deduce the proton number and nucleon number of **R**.

[1 mark]

Do not write outside the

box

proton number = _____

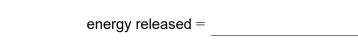
nucleon number =

Do not write outside the box

06. 4 Uranium-233 nuclei undergo neutron-induced fission.

One possible fission reaction is shown below.

$${}^{1}_{0}n + {}^{233}_{92}U \rightarrow {}^{136}_{54}Xe + {}^{95}_{38}Sr + {}^{1}_{0}n$$


Table 2 shows the binding energy per nucleon for each nuclide.

Та	bl	e	2
ıa	D	e	4

Nuclide	Binding energy per nucleon / MeV
²³³ ₉₂ U	7.60396
¹³⁶ ₅₄ Xe	8.39619
95 38 Sr	8.54912

Calculate, in J, the energy released in this fission reaction.

[3 marks]

Question 6 continues on the next page

J

0 6.5	When a large number of nuclei of uranium-233 undergo fission, the average energy	Do not write outside the box
	released per fission will be different to your answer to Question 06.4 .	
	Explain why. [1 n	nark]
06.6	The critical mass of uranium-233 is 16 kg.	
	Show that the radius of a sphere of uranium-233 of critical mass is approximately 6 cm .	
	density of uranium-233 = $1.9\times10^4~kg~m^{-3}$ [2 m	arks]

0 0]. 0	Explain why a cylinder of uranium-233 with a mass of 16 kg is unat fission chain reaction.	[3 marks]
0 6 . 8		
	$\sigma =$	m^{-1}
	Determine σ for the sphere in Question 06.6 .	[2 marks]
	Determine σ for the sphere in Question 06.6	
	$\sigma = \frac{\text{surface area}}{\text{volume}}$	

Section B		

Do not write outside the

box

Each of the questions in this section is followed by four responses, A, B, C and D.

For each question select the best response.

Only **one** answer per question is allowed.

 \bullet

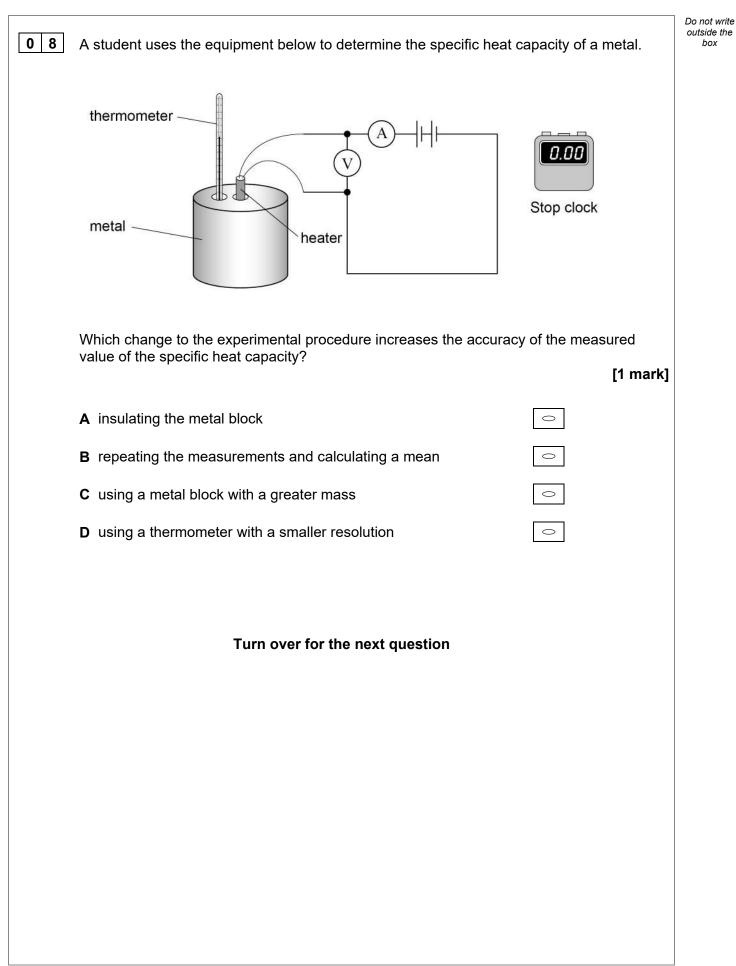
For each question, completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

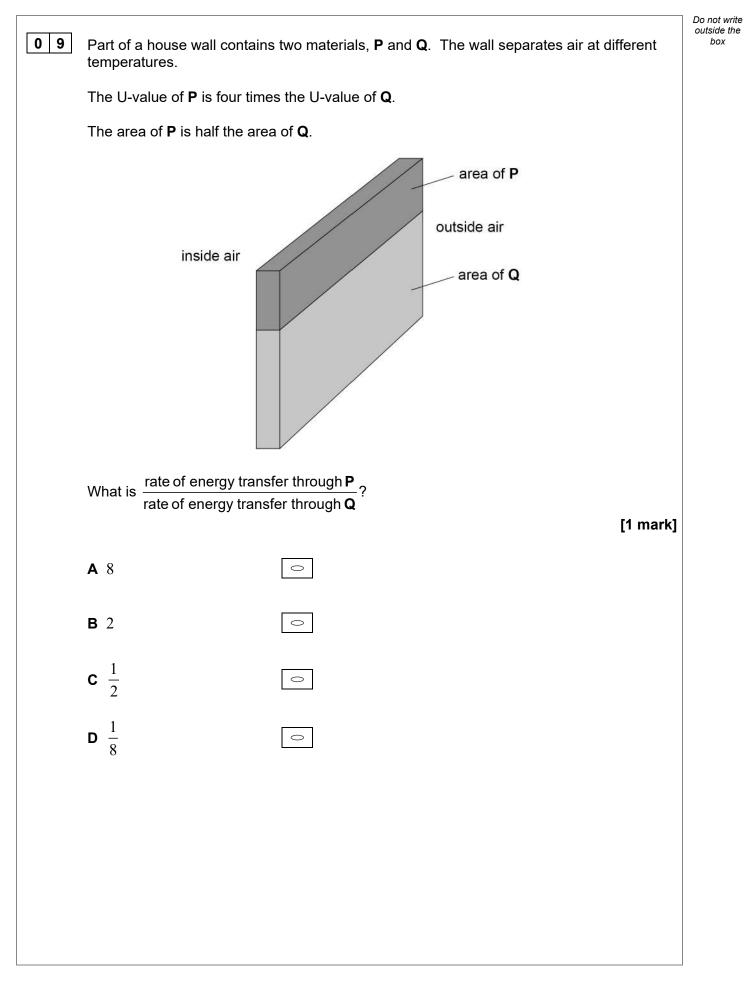
WRONG METHODS 🗴 👁 🐟 🗹

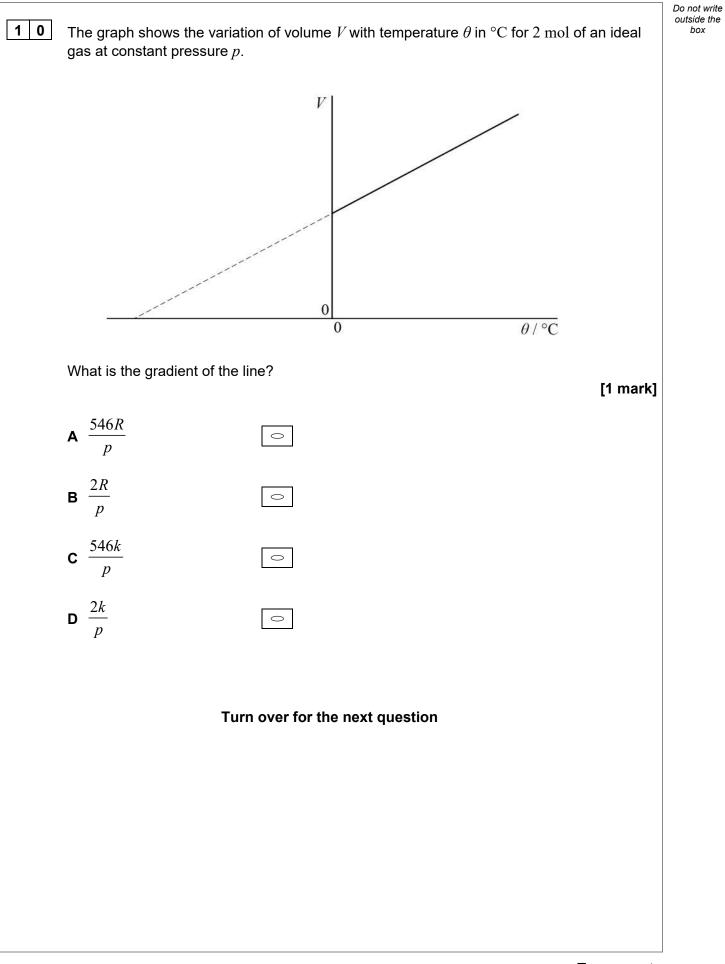
If you want to change your answer you must cross out your original answer as shown.

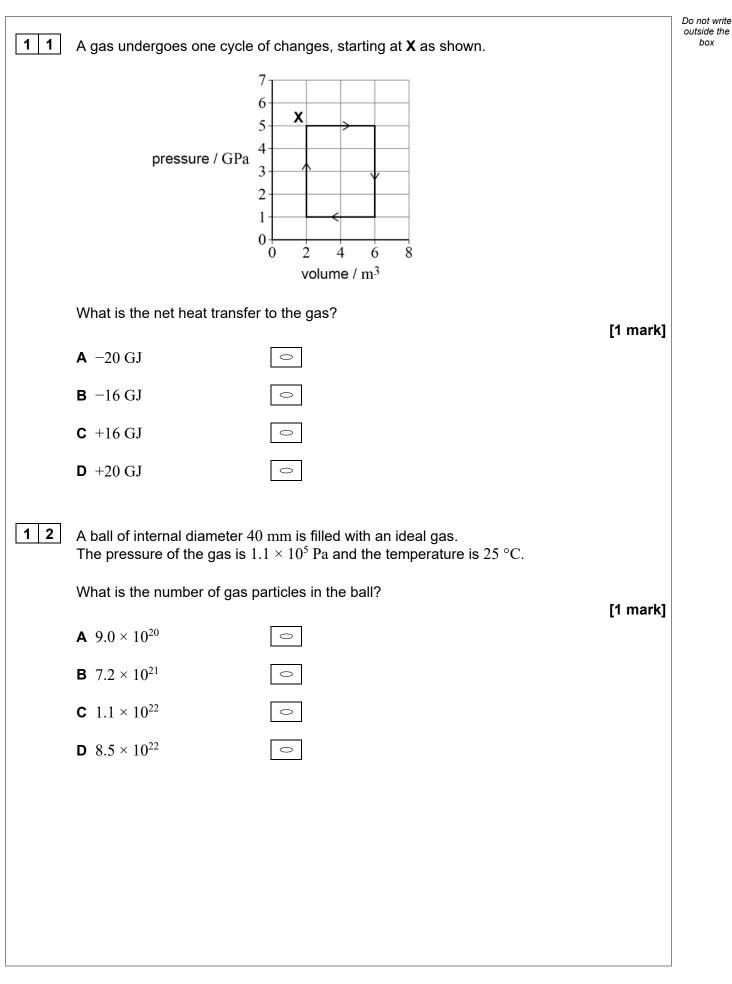
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

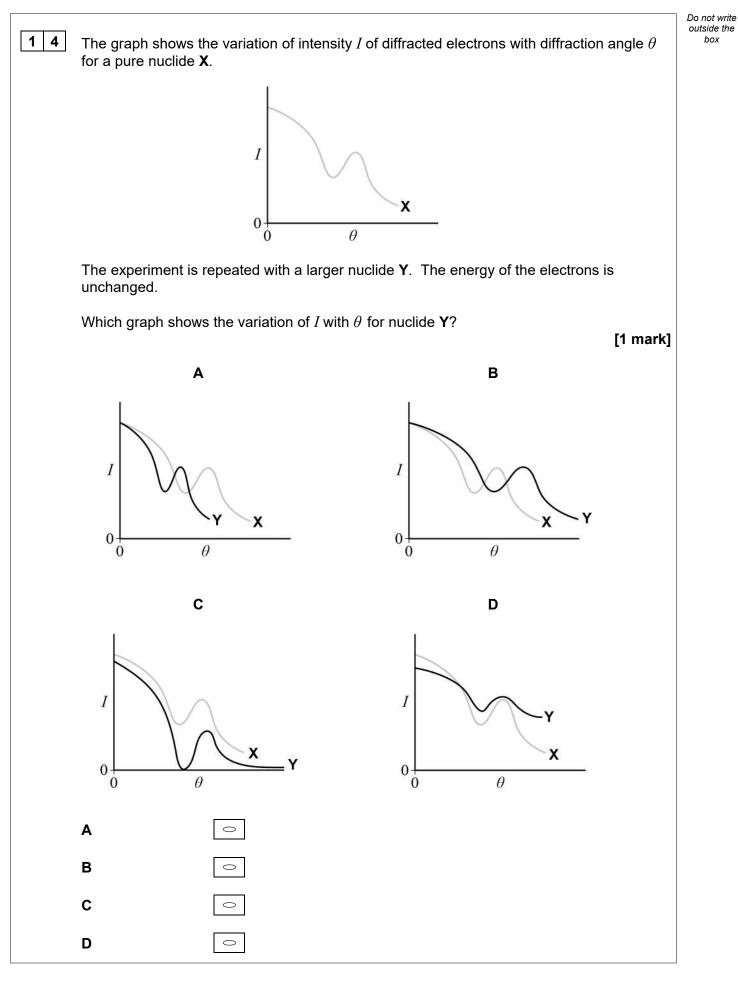

You may do your working in the blank space around each question but this will not be marked. Do **not** use additional pages for this working.

0 7 Which produces the largest change in temperature in a system?

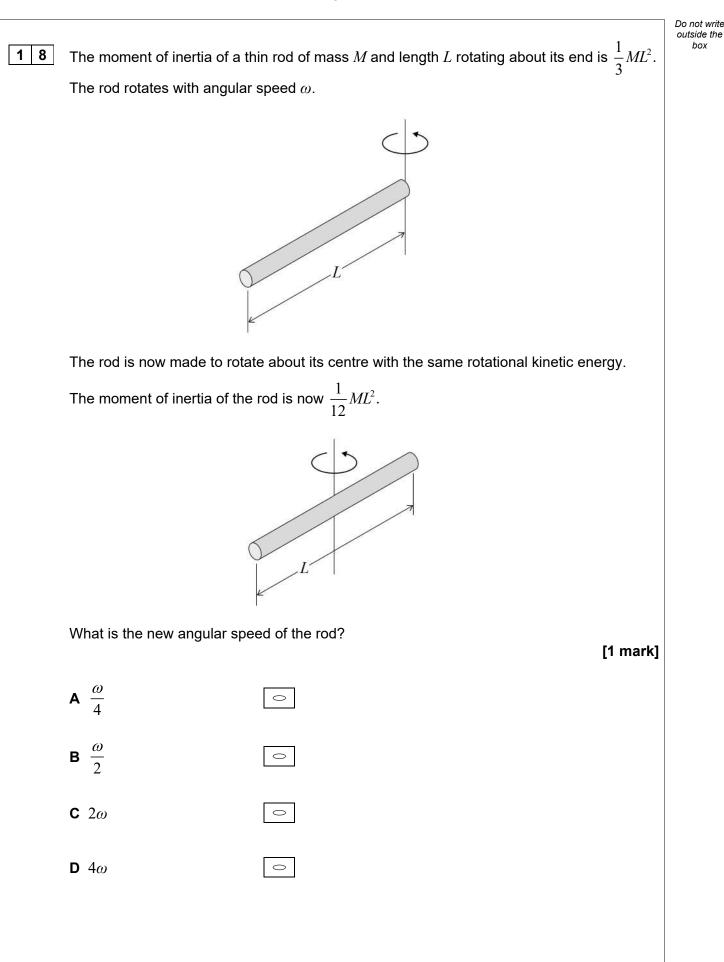

Work done on system Heating of system +100 J-200 J Α \bigcirc В -100 J +300 J \bigcirc С -100 J -300 J \bigcirc D +100 J +150 J \bigcirc

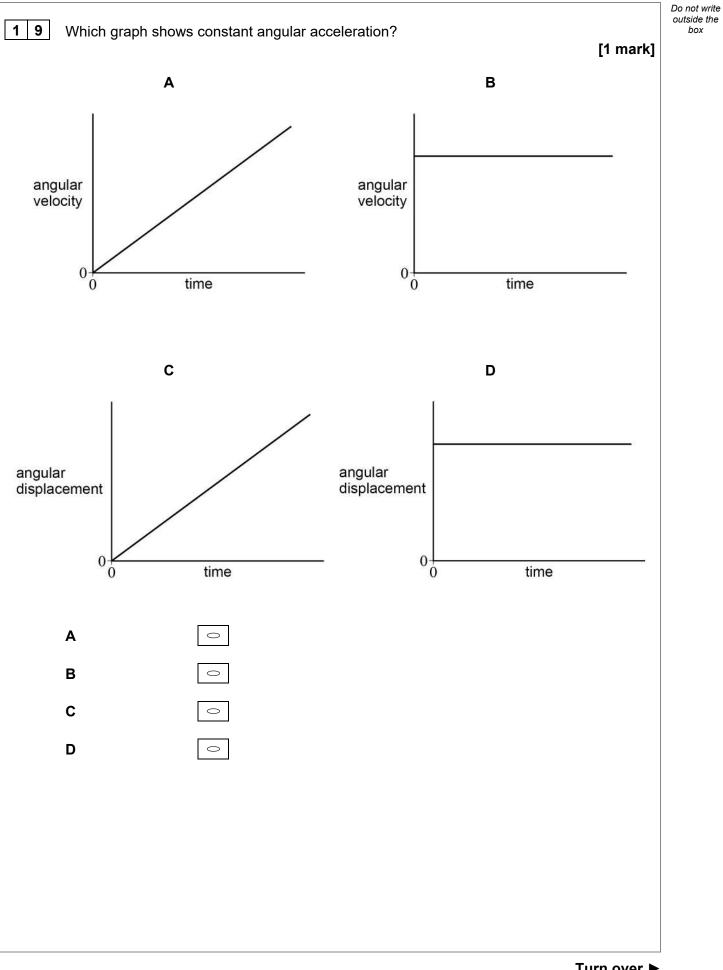

[1 mark]

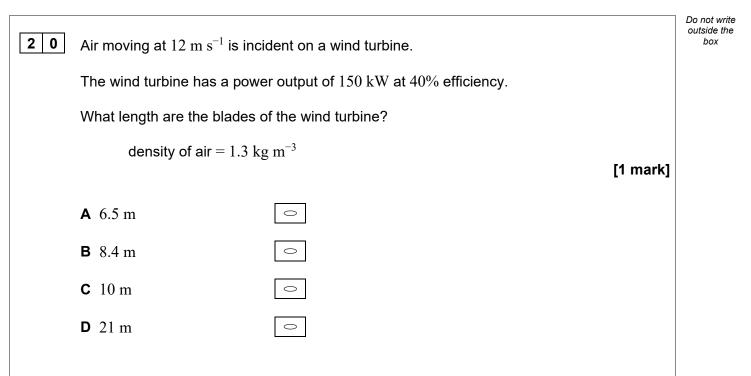


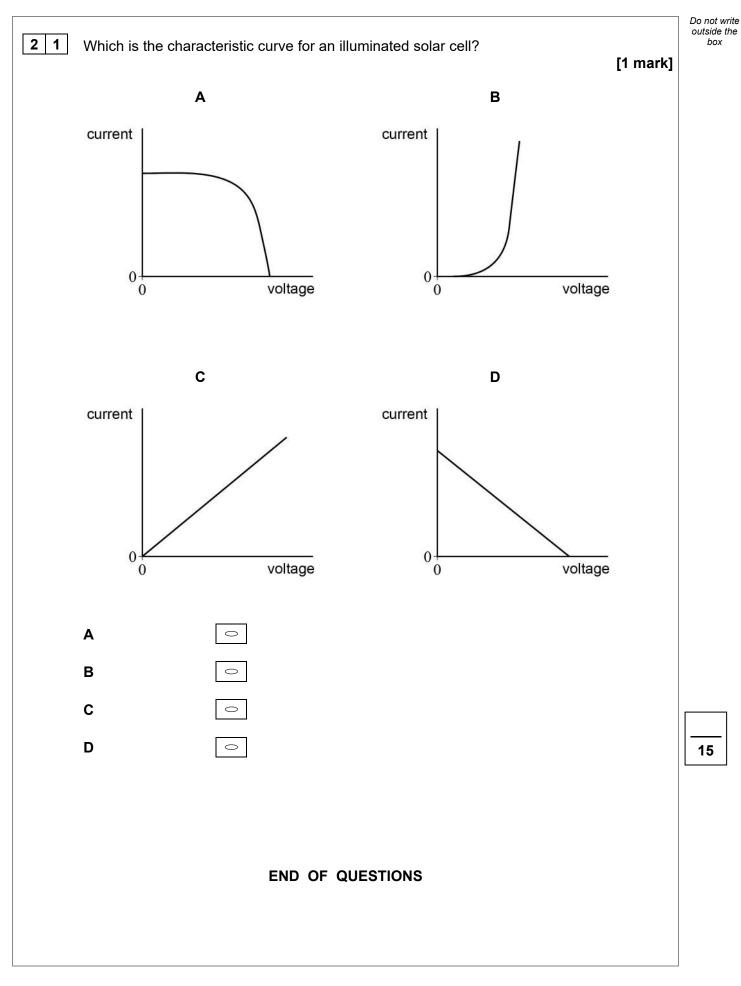


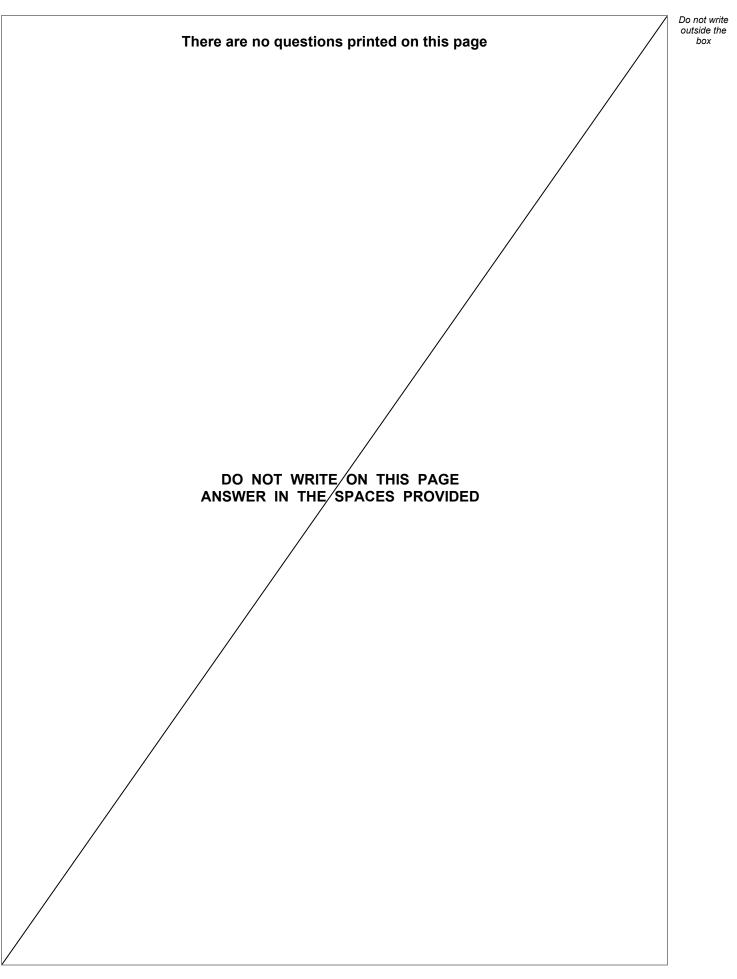
1 3	A sample of nitrogen gas is at $80 ^{\circ}$ C. Nitrogen has a molar mass of $28 \mathrm{g \ mol^{-1}}$.	Do not write outside the box
	What is the root mean square speed of the molecules in the sample? [1 mark]	
	A 0.27 km s^{-1}	
	B 0.56 km s^{-1}	
	C 72 km s^{-1}	
	D 310 km s ⁻¹	
	Turn over for the next question	
	Turn over ►	



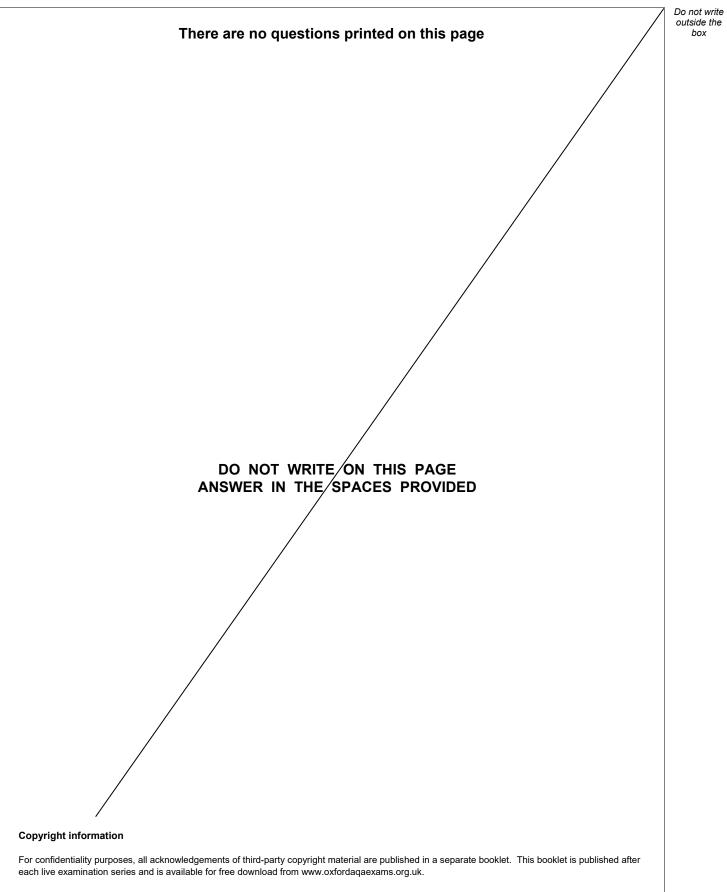

The radius of a polonium-210 r	nucleus is 5.6 fm.		Do not write outside the box
What is the radius of a silicon-2	28 nucleus?		
		[1 mark]	
A 0.7 fm	0		
B 1.2 fm	0		
C 2.0 fm	0		
D 2.9 fm	0		
Moderators are used in therma	l nuclear reactors because	[1 mark]	
A fast neutrons are less likely	to escape from the reactor.	0	
B fast neutrons are more likely	/ to decay into a proton.	0	
C slow neutrons are unaffected	d by control rods.	0	
D slow neutrons are more likel	ly to be absorbed by the nuclear fuel.	0	
The first step in the hydrogen c nuclei.	cycle for solar fusion leads to the formation of deute	erium	
A deuterium nucleus is produce	ed by the fusion of two protons and the emission of	f [1 mark]	
A an alpha particle.	0		
B a beta-minus particle.	0		
C a beta-plus particle.	0		
D a neutron.	0		
	 What is the radius of a silicon-2 A 0.7 fm B 1.2 fm C 2.0 fm D 2.9 fm Moderators are used in therma A fast neutrons are less likely B fast neutrons are more likely C slow neutrons are unaffecte D slow neutrons are more likely The first step in the hydrogen of nuclei. A deuterium nucleus is produce A an alpha particle. B a beta-minus particle. C a beta-plus particle. 	 B 1.2 fm C 2.0 fm D 2.9 fm C A fast neutrons are less likely to escape from the reactor. B fast neutrons are more likely to decay into a proton. C slow neutrons are unaffected by control rods. D slow neutrons are more likely to be absorbed by the nuclear fuel. The first step in the hydrogen cycle for solar fusion leads to the formation of deute nuclei. A deuterium nucleus is produced by the fusion of two protons and the emission of A an alpha particle. C a beta-minus particle. 	Imark Imark Imark Imark <




box



Question number	Additional page, if required. Write the question numbers in the left-hand margin.



Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

