

GCE

Physics B

H157/02: Physics in depth

Advanced Subsidiary GCE

2021 Mark Scheme

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
SF	Error in number of significant figures
✓	Correct response
?	Wrong physics or equation

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

			www.akbaracademy.co.uk
Question	Answer	Marks	Guidance
Section A			
1 (a)	Mean of remaining data = 0.278 mm ✓ Range of remaining data = 0.29 – 0.26 mm = 0.03 mm Uncertainty (Spread) = ½ range = 0.015 mm ✓ Sig figs: Round uncertainty to 1 s.f., i.e. 0.01 or 0.02 mm ✓ Express mean to same number of d.p. as uncertainty ✓	4	ECF own uncertainty
(b)	0.34 mm is > 2× uncertainty from mean of remaining data ✓ Any reasonable suggestion for anomaly ✓	2	Allow 'well away from all remaining readings' OWTTE e.g. micrometer not perpendicular to wire
	Total	6	
2 (a)	Same current enters the electrolytic cell as leaves it ✓ Which requires each electrode to receive the same charge in the same time ✓	2	
(b)	Arrow on 2+ to right and arrow on 1- to left AND Opposite charges attract ✓ Arrow on 2+ half the size of arrow on 1- ✓ Because same charge received per second requires twice as many 1- as 2+, so they move faster/twice as fast ✓	3	Can explain directions in terms of current produced by battery
	Total	5	
3 (a)	(Starts stiff and) gets easier to pull going O to A ✓ Gets harder to pull as you approach B ✓	2	
(b)	Less work done by band (on the stretching agent) in the BCO ✓ Internal energy of band has increased/band is hotter ✓	2	Credit A-level treatment but not expected here
	Total	4	

Question	Answer	Marks	Guidance
4	Converts σ to ρ or R to $G \checkmark$ Correct values substituted into the relevant equation $A = 1.9(3) \times 10^{-7} \text{ (m}^2\text{)} \checkmark$	1 √ 3	ρ = 1.06 × 10 ⁻⁶ m, G = 0.0378 S m.p.2 may subsume m.p.1
		Total 3	
5	E = $3.31 \times 10^{-18} \text{ J} - 2.99 \times 10^{-18} \text{ J} = 3.2 \times 10^{-19} \text{ J}$ P = $3.4 \times 10^{17} \text{ s}^{-1} \times 3.2 \times 10^{-19} \text{ J} = 0.109 \text{ W} \checkmark$	1	
	b) $f = E/h = 3.2 \times 10^{-19} \text{ J/} 6.63 \times 10^{-34} \text{ J s}^{-1} = 4.83 \times 10^{-14} \text{ J}$ $\lambda = c/f = 3.00 \times 10^{-8} \text{ m s}^{-1}/4.83 \times 10^{-14} \text{ Hz} = 6.22 \times 10^{-7}$		e.c.f own E value from (a) Or: recall $E = hc/\lambda \checkmark$ and evaluation \checkmark Allow 2 or 3 s.f.
	for each photon, $\triangle mv = h/\lambda = 6.63 \times 10^{-34} \text{ J s}^{-1}/6.223$ = 1.06(7)×10 ⁻²⁷ N s \checkmark $F = 3.4 \times 10^{17} \text{ s}^{-1} \times 1.06(7) \times 10^{-27} \text{ N s} = 3.62(7) \times 10^{-27} \text{ N}$	2	
		Total 5	
	Section A total	23	

Question		Answer	Marks	Guidance
Section B				
6 (a)	(i)	Resultant force $F = ma = 14700 \text{ kg} \times 2.1 \text{ m s}^{-2} = 30870 \text{ N}\checkmark$ Weight W of lem = $mg = 14700 \text{ kg} \times 1.62 \text{ N kg}^{-1} = 23814 \text{ N} \checkmark$ $F = \text{thrust} - W \text{ so thrust} = 30870 \text{ N} + 23814 \text{ N} = 54685 \text{ N} \checkmark$	3	Comparison with 55 kN can be assumed
(a)	(ii)	$s = \frac{1}{2} a t^2$ so 10 m = $\frac{1}{2} \times 2.1$ m s ⁻² × t^2 \checkmark $t = \sqrt{(2s/a)} = \sqrt{(2 \times 10 \text{ m/} 2.1 \text{ m s}^{-2})} = 3.086 \text{ s} = 3.1 \text{ s} \checkmark$	2	Choice of equation and substitution of values Rearrangement and evaluation
(a)	(iii)	a = force per kg/1 kg = 54685 m s ⁻² \checkmark Δt for 1 kg to leave rocket = 1/15 s $v = a\Delta t = 54685$ m s ⁻² × 1/15 s = 3645.7 m s ⁻¹ = 3650 m s ⁻¹ \checkmark	2	Use of $F=\Delta p/\Delta t$ is OK, but not AS
(b)		magnitude of displacement = $\sqrt{(300)^2 + (18)^2}$ km = 301 km \checkmark mean speed = 301 000 m/440 s = 684 m s ⁻¹ \checkmark	2	Or vertical displacement is negligible, so displacement= 300 km 300 km gives 682 m s ⁻¹
(c)	(i)	8.0 12.0 ✓	1	Both needed for the mark
(c)	(ii)	2.2(2) 2.5(0) 2.8(6)/2.9	1	All three needed for the mark < Ignore sig figs for the third one?>
(c)	(iii)	8.4 ✓ 13.4 ✓	2	Ecf from (ii)
(c)	(iv)	m ↓⇒ a ↑✓ v increases more rapidly/ Δv will get increasingly larger \checkmark	2	
		Total	15	

Que	stion		Answer	Marks	Guidance
7	(a)		One point from each category and any one other <i>General</i> : Lead-acid batteries much heavier than Li-ion for same energy/ Li-ion has much more energy per kg than lead-acid ✓ By a factor of 260/37 = 7 ✓ Total energy stored in Li-ion example is roughly double that in the lead-acid ✓ <i>Li-ion for car</i> : Less massive car has greater acceleration (for same force) ✓ Requires less energy to go uphill ✓ Is more manoeuvrable ✓ <i>Lead-acid for fork-lift</i> : Heavy, low battery makes the truck less likely to tip ✓ Truck needs to move slowly, so acceleration not an issue ✓ Doesn't need to go uphill ✓	4	
	(b)	(i)	Energy stored = 275 kg × 940kJ kg ⁻¹ = 2.585 × 10 ⁸ J ✓	1	
		(ii)	p.d. across motor = 350 V – (230 A x 0.030 Ω) = 343.1 V \checkmark resistance of motor = 343.1V/ 230 A = 1.49 $\Omega\checkmark$	2	NB if internal resistance ignored, V/I = 1.52Ω P/I ² = 1.51Ω
		(iii)	$t = 200 \text{ km/80 km h}^{-1} = 2.5 \text{ h} = 9000 \text{ s}\checkmark$ $P = E/t = 2.574 \times 10^8 \text{ J/9000 s} = 28600 \text{ W}$ (which is about ½ of 80 kW) \checkmark	2	

quotation of the data a acceleration/force/ener reasoned choice of the There is a well-develop logically structured. The substantiated. (Level 2) (3 – 4 marks) Compares performance quotation of the data a unsuccessful, to calcul andenergy. Uses the concice of the better fant. There is a line of reason The information present supported by some evidence of the two cars and in calculations of a or no reference to desire There is an attempt at reasoning. The information of the data and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and in calculations of a or no reference to desire the two cars and the two cars and the two cars are the two cars and the two cars are the two cars and the two cars are the two car	Answer	Marks	Guidance
	ance of the two cars, both in terms of direct ta and in calculations of energy. Uses the comparisons to produce a f the better family car. Yeloped line of reasoning which is clear and it. The information presented is relevant and exercise and makes attempts, possibly alculate at least one of acceleration, force the comparisons to produce a reasoned or family car. Yeloped line of reasoning which is clear and exercise and makes attempts, possibly alculate at least one of acceleration, force the comparisons to produce a reasoned or family car. Yeloped line of reasoning terms of direct ta and makes attempts, possibly alculate at least one of acceleration, force the comparisons to produce a reasoned or family car.	[6]	Indicative scientific points may include: Simple comparison of the data Range for A is double that for B Calculations for the two cars Acceleration of A = 2.44 m s ⁻² Due to resultant force 3.6 kN Acceleration of B = 1.75 m s ⁻² Due to resultant force 3.6 kN A runs at full power for 0.625 h = 38 minutes B runs at full power for 0.340 h = 20 minutes Desirable features for a family car Needs to go a reasonable distance and back without charging Need to hold a typical family Should have good acceleration (to avoid accidents) Use the L1, L2, L3 annotations in Scoris; do not use ticks.
	Total	15	
	Section B total	30	

Question	Answer	Marks	Guidance
Section C			
8 (a)*	(Level 3) (5 – 6 marks) A detailed procedure described in such a way that an experimenter could use it to perform the experiment. Range of frequencies to be used is well reasoned. General procedural details related to reproducibility and accuracy are well described. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		 Indicative scientific points may include: Preparatory calculations/estimates Wavelengths produced by sig. gen. are in the rang 1.7 mm to 34 m Max wavelength used = 4 × 35 cm = 1.4 m Corresponding to minimum frequency = 242 Hz Smallest reasonably measurable <i>L</i> is about 1 cm Corresponding to <i>f</i> = 340 m s⁻¹/0.04 m ≈ 8.5 kHz
	 (Level 2) (3 – 4 marks) Main points of the procedure, how to vary and measure <i>L</i>, are covered but may lack detail. Range of frequencies to be used may be missing or not clear. There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. (Level 1) (1 – 2 marks) Incomplete or superficial description of the procedure which could probably not be done adequately by someone with no prior experience of the experiment. Suitable frequency range to use may be absent. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant (0 marks) No response or no response worthy of credit. 	[6]	 General procedural details Make repeated readings to get at least 3 readings for each f e.g. by going up and then down in regular intervals of f Check data for outliers and repeat as necessary Find mean L and ΔL for each set at a particular f Pay attention to safety e.g. avoid tipping hazard of trailing cables Have preliminary run to confirm feasibility Details related to the resonance experiment Ruler clamped/ fastened next to the clamped tube Specified method of supporting outer cylinder securely or getting an second observer to read resonance position Use the L1, L2, L3 annotations in Scoris; do not use ticks.

			www.akbaracademy.co.uk
8 (b)	$\lambda = 4L_1 + 4C \checkmark$		
	$V = f\lambda \Rightarrow 1/f = \lambda/V \checkmark$	3	
	$1/f = 4L_1/v + 4C/v + \text{relating to } y = mx + c \checkmark$		
(c) (i)	Higher f resonances less easy to determine ✓ Due to less variation in sound intensity ✓	2	Allow any reasonable suggestion
(c) (ii)	Variation in <i>f</i> small compared with variation in <i>L</i> / signal generator sets f reliably precisely ✓	1	
(c) (iii)	800 0.0012 5 900 0.0011 1 AND both points correctly plotted ✓	1	Sig figs must be same as other 1/f data
(c) (iv)	Reasonable best-fit line and one extreme passible line \checkmark At least one correct gradient calculation with triangle base at least 0.1 m \checkmark $v = 350 \text{ m s}^{-1} \checkmark$ $\Delta v = 40 \text{ m s}^{-1} \checkmark$	4	e.c.f. own lines
	Section C Total	17	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

