

INTERNATIONAL AS AND A-LEVEL PHYSICS

(9630)

Data and formula booklet Insert

This booklet is provided with Oxford AQA International AS and A-level question papers

Data: Fundamental constants and values

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^{8}	m s ⁻¹
permeability of free space	μ_o	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_{0}	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	e	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	6.67×10^{-11}	${\rm N~m^2~kg^{-2}}$
the Avogadro constant	N_A	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
electron rest mass (equivalent to $5.5 \times 10^{-4} \mathrm{u}$)	m_e	9.11×10^{-31}	kg
electron charge/mass ratio	$rac{e}{m_e}$	1.76×10^{11}	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	m_p	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$rac{e}{m_p}$	9.58×10^7	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	m_n	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$ m N~kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

Astronomical data

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

Geometric equations	
arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$= \frac{4}{3}\pi r^3$

Unit 1

Mechanics and materials

moments	moment =	Fd

velocity and acceleration
$$v = \frac{\Delta s}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$

equations of motion
$$v = u + at$$

$$v^2 = u^2 + 2as$$

$$s = \frac{(u+v)}{2} t$$

$$s = ut + \frac{1}{2}at^2$$

force
$$F = ma$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

impulse
$$F \Delta t = \Delta(mv)$$

work, energy
$$W = F s \cos \theta$$
 and power

$$E_{\rm K} = \frac{1}{2} m v^2$$
 $\Delta E_{\rm P} = mg\Delta h$
 $P = \frac{\Delta W}{\Delta t}, P = Fv$

efficiency =
$$\frac{\text{useful output power}}{\text{input power}}$$

density
$$\rho = \frac{m}{V}$$

Hooke's law
$$F = k \Delta L$$

Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}}$$

tensile stress =
$$\frac{F}{A}$$

tensile strain =
$$\frac{\Delta L}{I}$$

energy stored
$$E = \frac{1}{2}F\Delta L$$

Particles, radiation and radioactivity

inverse square law for
$$\gamma$$
 radiation $I = \frac{I_0}{r^2}$

Unit 2

Electricity

current and pd
$$I = \frac{\Delta Q}{\Delta t}$$
 $V = \frac{W}{Q}$ $R = \frac{V}{I}$

resistivity
$$\rho = \frac{RA}{L}$$

resistors in series
$$R_T = R_1 + R_2 + R_3 + \dots$$

resistors in parallel
$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

energy
$$E = IVt$$

power
$$P = VI = I^2R = \frac{V^2}{R}$$

emf
$$\varepsilon = \frac{E}{O}$$
 $\varepsilon = I(R + r)$

Oscillations and waves

for a mass-spring system
$$T = 2\pi \sqrt{\frac{m}{k}}$$

for a simple pendulum
$$T = 2\pi \sqrt{\frac{l}{g}}$$

wave speed
$$c = f\lambda$$
 period $f = \frac{1}{T}$

first harmonic
$$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$$

fringe spacing
$$w = \frac{\lambda D}{s}$$
 diffraction grating $d \sin \theta = n\lambda$

refractive index of a substance s,
$$n = \frac{c}{c_s}$$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

critical angle
$$\sin \theta_c = \frac{n_2}{n_1}$$
 for $n_1 > n_2$

photon energy
$$E = hf = \frac{hc}{2}$$

photoelectricity
$$hf = \phi + E_{k(max)}$$

energy levels
$$hf = E_1 - E_2$$

de Broglie wavelength
$$\lambda = \frac{h}{n} = \frac{h}{mv}$$

Unit 3

Circular motion and periodic motion

magnitude of angular speed	$\omega = \frac{v}{r}$
	$\omega = 2\pi f$
centripetal acceleration	$a = \frac{v^2}{r} = \omega^2 r$
centripetal force	$F = \frac{mv^2}{r} = m\omega^2 r$
acceleration	$a = -\omega^2 x$
displacement	$x = A\cos(\omega t)$
speed	$v = \pm \omega \sqrt{A^2 - x^2}$
maximum speed	$v_{max} = \omega A$
maximum acceleration	$a_{max} = \omega^2 A$
for a mass-spring system	$T = 2\pi \sqrt{\frac{m}{k}}$
for a simple pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$

Gravitational fields and satellites

total energy of an

oscillator

 $E = \frac{1}{2} m \omega^2 A^2$

force between point masses	$F = \frac{Gm_1m_2}{r^2}$
gravitational field strength	$g = \frac{F}{m}$
magnitude of gravitational field strength in a radial field	$g = \frac{GM}{r^2}$
work done	$\Delta W = m\Delta V$
gravitational potential	$V = -\frac{GM}{r}$
	$g = -\frac{\Delta V}{\Delta r}$

Exponential change

,	
time constant	RC
time to halve	$T_{\frac{1}{2}} = \ln 2 RC$
capacitor charging	$Q = Q_0(1 - e^{-\frac{t}{RC}})$
capacitor discharging	$Q = Q_0 e^{-\frac{t}{RC}}$
radioactive decay	$\frac{\Delta N}{\Delta t} = - \lambda N$
	$N = N_{\rm o}e^{-\lambda t}$
activity	$A = \lambda N$
	$A = A_0 e^{-\lambda t}$
half-life	$T_{\frac{1}{2}} = \frac{\ln 2}{2}$

Electric fields and capacitance

Electric ficiae aria	capacitarios
force between point charges in a vacuum	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$
force on a charge	$E = \frac{F}{Q}$
field strength for a uniform field	$E = \frac{V}{d}$
field strength for a radial field	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
work done moving a charge Q	$\Delta W = Q\Delta V$
	$Fd = Q\Delta V$
electric potential	$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
	$E = \frac{\Delta V}{\Delta r}$
	^
capacitance	$C = \frac{Q}{V}$
capacitance	$C = \frac{Q}{V}$ $C = \frac{A\varepsilon_0\varepsilon_r}{d}$
capacitance capacitor energy stored	

Magnetic fields

force on a current	F = BIl
force on a moving charge	F = BQv
magnetic flux	$\Phi = BA$
magnetic flux linkage	$N\Phi = BAN\cos\theta$
magnitude of induced emf	$\varepsilon = \frac{\Delta \Phi}{\Delta t}$
emf induced in a rotating coil	$\varepsilon = BAN\omega\sin\omega t$
alternating current I_{rms}	$I_{rms} = \frac{I_0}{\sqrt{2}} \qquad V_{rms} = \frac{V_0}{\sqrt{2}}$
transformer equations	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$
	efficiency = $\frac{I_s V_s}{I_p V_p}$

Unit 4

Thermal physics

$$Q = mc\Delta\theta$$

energy to change state

$$Q = ml$$

$$pV = nRT$$
$$pV = NkT$$

$$pV = \frac{1}{3}Nm (c_{rms})^2$$

$$\frac{1}{2}m (c_{rms})^2 = \frac{3}{2}kT = \frac{3RT}{2N_4}$$

$$\Delta U = Q + W$$

 $W = p\Delta V$

$$\frac{kA\Delta\theta}{L}$$

$$UA\Delta\theta$$

Nuclear physics

nuclear radius
$$R = R_0 A^{1/3}$$

$$E = m c^2$$

Energy sources

$$I = mr^2$$
$$I = \Sigma mr^2$$

$$E_{\rm k(rot)} = \frac{1}{2}I\omega^2$$

$$\omega = \omega_0 + \alpha t$$

$$\omega^2 = \omega_0^2 + 2\alpha\theta$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\theta = \frac{(\omega_0 + \omega)}{2}t$$

$$T = I\alpha$$
$$T = Fr$$

 $I\omega$

angular impulse
$$T\Delta t = \Delta(I\omega)$$

$$W = T\theta$$

$$P = T\omega$$

maximum power available from a

$$P = \frac{1}{2}\pi r^2 \rho v^3$$

$$I = \frac{P}{4\pi r^2}$$