

OXFORD AQA INTERNATIONAL A-LEVEL AS Physics

Data and formulae booklet

Insert

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	$3.00 imes 10^8$	m s ⁻¹
permeability of free space	μ_0	$4\pi imes 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	е	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$
the Avogadro constant	N_{A}	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	$W m^{-2} K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 imes10^{-4}$ u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$\frac{e}{m_{\rm e}}$	1.76×10^{11}	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_{\rm p}}$	9.58×10^7	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ⁻²
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
curved surface area of cylinder	$=2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

Unit 1

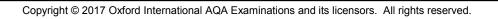
Mechanics and materials

moments	moment = Fd	
velocity and acceleration	$v = \frac{\Delta s}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	
	$v^2 = u^2 + 2as$	
	$s = \left(\frac{u+v}{2}\right) t$	
	$s = ut + \frac{at^2}{2}$	
force	F = ma	
	$F = \frac{\Delta(mv)}{\Delta t}$	
impulse	$F \Delta t = \Delta(mv)$	
work, energy and power	$W = F s \cos \theta$	
	$E_{\rm k} = \frac{1}{2} m v^2$	$\Delta E_{\rm p} = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}, P = F$	v
	$efficiency = \frac{use}{use}$	ful output power input power
density	$ \rho = \frac{m}{V} $	
Hooke's law	$F = k \Delta L$	
Young modulus =	tensile stress tensile strain	
tensile stress = $\frac{F}{A}$		
tensile strain = $\frac{\Delta I}{L}$	_	
energy stored E		

Particles, radiation and radioactivity

 $I = \frac{I_0}{r^2}$

inverse square law for γ radiation


Unit 2

Electricity

current and pd	$I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{W}{Q} \qquad R = \frac{V}{I}$
resistivity	$\rho = \frac{RA}{L}$
resistors in series	$R_{\rm T} = R_1 + R_2 + R_3 + \dots$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$
energy transferred	E = IVt
power	$P = VI = I^2 R = \frac{V^2}{R}$
emf	$\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R + r)$

Oscillations and waves

 $T = 2\pi \sqrt{\frac{m}{k}}$ for a mass-spring system $T = 2\pi \sqrt{\frac{l}{g}}$ for a simple pendulum period $f = \frac{1}{T}$ wave speed $c = f\lambda$ $\begin{array}{l} first\\ harmonic \end{array} \quad f = \frac{1}{2l} \sqrt{\frac{T}{\mu}} \end{array}$ $w = \frac{\lambda D}{s}$ $\frac{diffraction}{grating}$ $d\sin\theta = n\lambda$ fringe spacing refractive index of a substance s, $n = \frac{c}{c_s}$ for two different substances of refractive indices n_1 and n_2 , *law of refraction* $n_1 \sin \theta_1 = n_2 \sin \theta_2$ critical angle $\sin \theta_c = \frac{n_2}{n_1} \text{ for } n_1 > n_2$ $E = hf = \frac{hc}{\lambda}$ photon energy $hf = \phi + E_{k(max)}$ photoelectricity $hf = E_1 - E_2$ energy levels $\lambda = \frac{h}{p} = \frac{h}{mv}$ de Broglie Wavelength

