

OXFORD AQA INTERNATIONAL A-LEVEL AS Physics

Data and formulae booklet

Insert

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^{8}	${\rm m\ s^{-1}}$
permeability of free space	μ_0	$4\pi\times10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	e	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$
the Avogadro constant	N_{A}	6.02×10^{23}	mol⁻¹
molar gas constant	R	8.31	$J K^{-1} mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	$W m^{-2} K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 \times 10^{-4} \mathrm{u}$)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$rac{e}{m_{ m e}}$	1.76×10^{11}	$ m C~kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$rac{e}{m_{ m p}}$	9.58×10^7	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$ m N~kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA GEOMETRICAL EQUATIONS Mass/kg Mean radius/m $arc\ length = r\theta$

Body	Mass/kg	Mean radius/m	arc length	$= r\theta$
Sun	1.99×10^{30}	6.96×10^{8}	circumference of circle	$=2\pi r$
Earth	5.97×10^{24}	6.37×10^6	area of circle	$=\pi r^2$
			curved surface area of cylinder	$=2\pi rh$
			area of sphere	$=4\pi r^2$
			volume of sphere	$=\frac{4}{3}\pi r^3$

Unit 1

Mechanics and materials

moments moment = Fd

velocity and $v = \frac{\Delta s}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$

equations of v = u + at

 $v^2 = u^2 + 2as$

 $s = \left(\frac{u+v}{2}\right) t$

 $s = ut + \frac{at^2}{2}$

force F = ma

 $F = \frac{\Delta(mv)}{\Delta t}$

impulse $F \Delta t = \Delta(mv)$

work, energy $W = F s \cos \theta$ and power

 $E_{\rm k} = \frac{1}{2} \, m \, v^2 \qquad \Delta E_{\rm p} = mg \Delta h$

 $P = \frac{\Delta W}{\Delta t}, P = Fv$

 $efficiency = \frac{useful\ output\ power}{input\ power}$

density $\rho = \frac{m}{V}$

Hooke's law $F = k \Delta L$

 $Young\ modulus = \frac{tensile\ stress}{tensile\ strain}$

tensile stress = $\frac{F}{A}$

 $tensile strain = \frac{\Delta L}{I}$

energy stored $E = \frac{1}{2}F\Delta L$

Particles, radiation and radioactivity

inverse square law for γ radiation $I = \frac{I_0}{r^2}$

Unit 2

Electricity

current and pd $I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$

resistivity $\rho = \frac{RA}{L}$

resistors in series $R_T = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$

energy transferred E = IVt

power $P = VI = I^2R = \frac{V^2}{R}$

emf $\varepsilon = \frac{E}{Q} \qquad \qquad \varepsilon = I(R+r)$

Oscillations and waves

for a mass-spring system $T = 2\pi \sqrt{\frac{m}{k}}$

for a simple pendulum $T = 2\pi \sqrt{\frac{l}{g}}$

wave speed $c = f\lambda$ period $f = \frac{1}{T}$

first $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$

fringe spacing $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$

refractive index of a substance s, $n = \frac{c}{c_c}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle $\sin \theta_c = \frac{n_2}{n_1} \text{for } n_1 > n_2$

photon energy $E = hf = \frac{hc}{\lambda}$

photoelectricity $hf = \phi + E_{k \text{ (max)}}$

energy levels $hf = E_1 - E_2$

de Broglie Wavelength $\lambda = \frac{h}{p} = \frac{h}{mv}$